Since the late 1990’s, the Wright Upper Extremities team has partnered with surgeons who have dedicated themselves to understanding the intricacies of the arthritic glenoid. From the Walch classification, to the landmark multi-centered studies highlighting the importance of subchondral bone preservation, the AEQUALIS™ PERFORM™+ system draws upon a rich clinical heritage resulting in the first “anatomic” augmented glenoid.
Walch Classifications

 Defined in 1999, the Walch classification was a first step in understanding the intricacies of the arthritic glenoid

 Numerous studies now demonstrate that B2 glenoids have an increased risk of loosening when treated with traditional glenoid implants

 Recent publication suggests that up to 41% of arthritic glenoids demonstrate some level of posterior erosion
Design Rationale

The AEQUALIS™ PERFORM™+ system was developed to address posterior glenoid deficiencies. The system has been specifically designed to restore appropriate humeral to glenoid position, provide accurate preparation and deliver bone preservation.
Implant Offering

- Four profile sizes (S/M and L/XL)
- Three augment sizes (15°, 25°, 35°)
- Side specific (Lefts & Rights)
Position

Designed to restore the joint line, correct version and re-center the humeral head
Standard Glenoid with Eccentric Reaming

Rebalanced Shoulder with AEQUALIS™ PERFORM™+
Accurately prepares the anterior “Paleo” surface

Position
Designed for precision in every step
The Marksman feature provides visual feedback to keep the reamer aligned to the guide pin.
Precisely prepares the “Neo” glenoid surface

Seamless transition between 15°, 25°, and 35° position

Low profile posterior border facilitates access

Depth stop rests on “Paleo” surface and prevents over reaming as well as ensures appropriate rotational alignment

Position

Designed for precision in every step
Low profile posterior border facilitates access.
Quick release drill bits act as anti-rotation pegs, and allow for a more streamlined surgical procedure.

The saddle is used to maintain alignment while drilling peripheral holes.

Checker verifies proper seating.

Position

Designed for precision in every step.
Preservation

More Bone, More Support

The AEQUALIS™ PERFORM™+ system was developed to address posterior glenoid deficiencies, that when treated with traditional implants have demonstrated an increased risk of glenoid loosening via finite element analysis. The “defect mimicking” augment shape was developed to preserve subchondral bone which has been demonstrated to be a critical factor in long-term survivorship. In an independent head-to-head comparison conducted via virtual implantation in CAD, the posterior wedge shape removed substantially less bone than the other designs, with the remaining bone being of better quality.
The Difference is Clear

Volumetric Bone Removal Comparison with Different Augmented Glenoid Designs

Volume of Bone Removed (mm3)

AEQUALIS™ PERFORM™+ Half Wedge

Full Wedge

Half Step
The Anatomic Augment Technique

Size & Place Pin → Paleo Ream → Anterior Drill → Neo Ream
References

1 Gilles Walch, MD; Roger Badet, MD; Aziz Boulahia, MD; Alfred Khoury, MD. Morphologic Study of the Glenoid in Primary Glenohumeral Osteoarthritis. J Arthroplasty. 1999; 14(6).

2 Gilles Walch, MD; Allan A. Young, MD; Pascal Boileau, MD; Markus Loew, MD; Dominique Gazielly, MD and Daniel Molé, MD. Patterns of Loosening of Polyethylene Keeled Glenoid Components After Shoulder Arthroplasty for Primary Osteoarthritis. Results of a Multicenter Study with More Than Five Years of Follow-up.

3 Gilles Walch, MD; Allan A. Young, MD; Barbara Melis, MD; Dominique Gazielly, MD; Markus Loew, MD; Pascal Boileau, MD. Results of a convex-back cemented keeled glenoid component in primary osteoarthritis: multicenter study with a follow-up greater than 5 years

5 Juan C. Hermida, MD; Cesar Flores-Hernandez, BS; Heinz R. Hoenecke, MD; Darryl D. D’Lima, MD, PhD. Augmented wedge-shaped glenoid component for the correction of glenoid retroversion: a finite element analysis. J Shoulder Elbow Surg (2014) 23, 347-354