## EVOLVE<sup>®</sup> TRIAD<sup>™</sup> Fixation System

SURGICAL TECHNIQUE





### Contents

| Chapter 1 | 4  | Product Information                                                 |  |  |  |
|-----------|----|---------------------------------------------------------------------|--|--|--|
|           | 5  | Indications                                                         |  |  |  |
|           | 5  | Contraindications                                                   |  |  |  |
| Chapter 2 | 6  | Device Description                                                  |  |  |  |
| Chapter 3 | 10 | Surgical Technique                                                  |  |  |  |
|           | 10 | Radial Head and Neck Plates                                         |  |  |  |
|           | 13 | Coronoid Plates                                                     |  |  |  |
|           | 14 | EVOLVE <sup>®</sup> TRIAD <sup>™</sup> 2.5mm Cannulated Bone Screws |  |  |  |
|           | 15 | EVOLVE® TRIAD™ 1.5mm and 2.0mm Bone Screws (Outside Plate)          |  |  |  |
| Appendix  | 16 | Ordering Information                                                |  |  |  |

#### Design Team:

John T. Capo, MD Graham King, MD MSc FRCSC David Ring, MD, PhD Virak Tan, MD

Proper surgical procedures and techniques are the responsibility of the medical professional. The following guidelines are furnished for information purposes only. Each surgeon must evaluate the appropriateness of the procedures based on his or her personal medical training and experience. Prior to use of the system, the surgeon should refer to the product package insert for complete warnings, precautions, indications, contraindications and adverse effects. Package inserts are also available by contacting Wright Medical Technology, Inc.

Please contact your local Wright representative for product availability.

## Product Information



**Radial Head and Neck Plates** 



Elbow fracture dislocations that involve a radial head fracture and a coronoid fracture are very challenging to manage. So much so that they are commonly referred to as the "Terrible Triad of the Elbow".<sup>1</sup> The EVOLVE<sup>®</sup> TRIAD<sup>™</sup> System is designed to address fixation of the fractures commonly associated with this injury.

apte

#### **Radial Head and Neck Plates**

- Polished Stainless Steel material
- · Optimized screw trajectories allow for fixation of multiple fragments
- ORTHOLOC<sup>™</sup> Mini Polyaxial Locking design allows for off axis placement of locking screws up to 10 degrees
- Round holes compatible with Locking or Non-Locking Screws
  - o 2.0mm ORTHOLOC<sup>™</sup> Mini Polyaxial Locking Screws
  - o 2.0mm EVOLVE<sup>®</sup> TRIAD<sup>™</sup> Non-Locking Bone Screws

#### **Coronoid Plates**

- · Three sizes available for multiple fracture types
- Accept 2.0mm EVOLVE® TRIAD™ Non-Locking Bone Screws
- Low profile

#### Bone Screws (for use outside the plate)

- 1.5mm EVOLVE<sup>®</sup> TRIAD<sup>™</sup> Bone Screws
- 2.0mm EVOLVE<sup>®</sup> TRIAD<sup>™</sup> Non-Locking Bone Screws
- 2.5mm EVOLVE<sup>®</sup> TRIAD<sup>™</sup> Cannulated Screws (Fully Threaded)

1. Ring D, Jupiter JB, Zilberfarb J. Posterior dislocation of the elbow with fractures of the radial head and coronoid. J Bone Joint Surg Am 2002;84:547–51.

#### Indications

Wright's EVOLVE<sup>®</sup> TRIAD<sup>™</sup> Fixation System is intended for fixation of fractures, osteotomies and non-unions of the olecranon, radius and ulna.

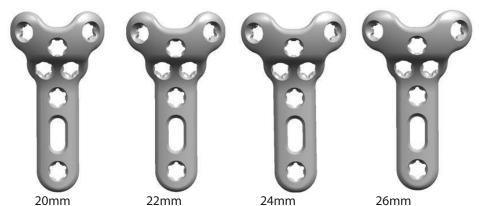
The ORTHOLOC<sup>™</sup> Mini Polyaxial Locking Screws are intended for use with Wright's plates manufactured from implant grade stainless steel that accept ORTHOLOC<sup>™</sup> Mini Polyaxial Locking Screws.

The EVOLVE<sup>®</sup> TRIAD<sup>™</sup> Bone Screws are indicated for use in bone reconstruction, osteotomy, arthrodesis, joint fusion, fracture repair, and fracture fixation of bones appropriate for the size of the device, including the scapula, long bones (ulna, radius and humerus) and small bones (metacarpals, metatarsals, and phalanges).

#### Contraindications

- Infection
- · Physiologically or psychologically inadequate patient
- Inadequate skin, bone, or neurovascular status
- Irreparable tendon system
- Possibility for conservative treatment
- · Growing patients with open epiphyses
- · Patients with high levels of activity

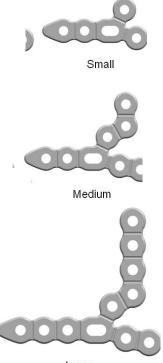
Refer to package inserts 146884 and 146886 for complete warnings, precautions, indications, contraindications and adverse effects.


## Device Description

# chapter

#### **Implant Selection – Plates**

There are four different sizes of the EVOLVE® TRIAD™ Radial Head Plates. Their sizes correspond with the most commonly used EVOLVE® Modular Radial Head diameters. In addition to the radial head plates, there are two sizes of radial neck plates. The surgeon should select the plate which best suits the fracture type and best fits the diameter of the radial head and neck. The radial head and radial neck plates feature polyaxial locking screw holes as well as oval holes that may be used to apply manual compression.


#### **Radial Head Plates**



**Radial Neck Plates** 



#### **Coronoid Plates**



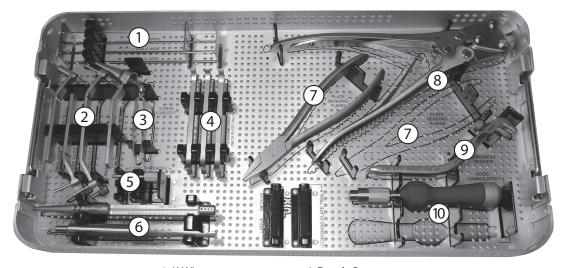
Large

The Coronoid Plates are available in small, medium and large sizes and are not left or right specific. Due to the variable size and shape of the coronoid, they may need to be cut to size and will require contouring to wrap around and buttress the coronoid. Select the size that best addresses the size of the fracture. To allow for variable screw positioning and to assist with their role as a buttress plate, the coronoid plates feature non-locking screw holes only.

#### Implant Selection – Screws

Select the appropriate compatible screw for use with the plate that is chosen.

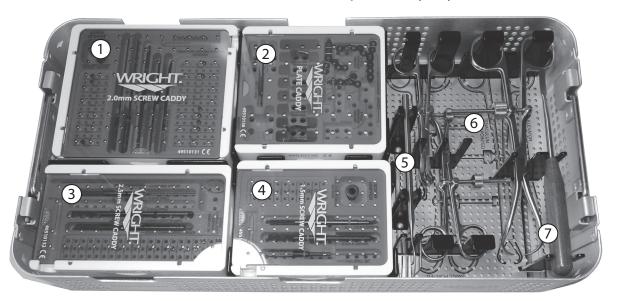
|                             | ORTHOLOC™<br>Mini Screw 2.0mm<br>Polaxial Locking | EVOLVE® TRIAD™<br>2.0mm Non-Locking<br>Bone Screw |
|-----------------------------|---------------------------------------------------|---------------------------------------------------|
| Radial Head and Neck Plates | Х                                                 | Х                                                 |
| Round Holes                 | Х                                                 | Х                                                 |
| Oval Holes                  |                                                   | Х                                                 |
| Coronoid Plates             |                                                   | Х                                                 |


Fractures that do not require a plate may be fixed using an EVOLVE® TRIAD™ Bone Screw.

| Diamete<br>(mm) | r Description                                    |                  | Туре                | Thread<br>Length  | Available Lengths<br>(mm)      | Pre-Drill<br>(mm) | Driver | Color<br>Code |
|-----------------|--------------------------------------------------|------------------|---------------------|-------------------|--------------------------------|-------------------|--------|---------------|
| 2.5 mm          | EVOLVE® TRIAD™<br>2.5mm Cannulated<br>Bone Screw | <b>HEALTHING</b> | Bone/<br>Cannulated | Fully<br>Threaded | 10-50 - 2mm<br>increment       | 2.0               | Star-8 |               |
| 2.0 mm          | ORTHOLOC™ Mini<br>Screw Polyaxial<br>Locking     | ANNI             | Plate/<br>Locking   | Fully<br>Threaded | 10-30 - 2mm<br>increment 35,40 | 1.3               | Star-7 | •             |
| 2.0 mm          | EVOLVE® TRIAD™<br>Non-Locking Bone<br>Screw      | Anna             | Plate/<br>Bone      | Fully<br>Threaded | 10-30 (2mm incr),<br>35,40     | 1.3               | Star-7 | •             |
| 1.5 mm          | EVOLVE® TRIAD™<br>1.5mm Bone Screw               |                  | Bone                | Fully<br>Threaded | 10-28 (2mm incr)               | 1.1               | Star-6 |               |

#### **Color Coding System**

The EVOLVE® TRIAD™ System features an instrument color coding system to increase O.R. efficiency. After choosing the appropriate screw, note its color code in the screw caddy. Select the drill and drill guide with the corresponding color coded markings. A black color code on an instrument indicates the instrument is used for lag screw fixation.


**EVOLVE® TRIAD<sup>™</sup> Instrument Tray** 



K-Wires
 Drill and K-Wire Guides
 Screw Forceps

4. In situ Sizers

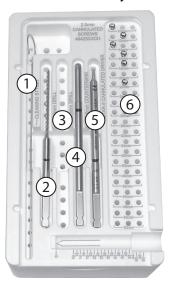
- 6. Depth Gauges 7. Bending Pliers
- 8. Plate Cutters
- 9. Coronoid Bender 10. Driver Handles
- 5. Threaded Drill Guides
- General Instruments and Implant Caddy Tray



- 1. 2.0mm Screw Caddy
- 2. Plate Caddy
- 3. 2.5mm Screw Caddy
- 4. 1.5mm Screw Caddy
- 5 Dental Pick 6. Tenaculums 7. Periosteal Elevator

#### 1.5mm Caddy

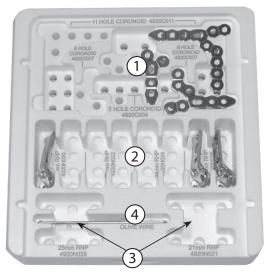



- 1. Screw Gripper 2. 1.5mm Screws
- 3. Countersink
- 4. Star-6 Driver
- 5. 1.1mm Drill

#### 2.0mm Caddy



- 1. Screw Gripper
- 2. 2.0mm Locking Screws
- 3. 2.0mm Non-Locking Screws
- 4. 1.3mm Drill (standard)
- 5. 2.0mm Drill (overdrill)
- 6. Countersink for 2.0 mm Screws
- 7. Star-7 Straight Driver
- 8. Star-7 Self Retaining Driver


#### 2.5mm Caddy



1. Cleaning Stylet 2. 2.0mm Drill 3. 2.5mm Drill

- 4. Countersink for 2.5mm Screws
- 5. Star-8 Driver
- 6. 2.5mm Screws

#### **Plate Caddy**



- Coronoid Plates
  Radial Head Plates
  Radial Neck Plates
- 4. Olive Wire

## Surgical Technique

#### Radial Head and Neck Plates

#### **Patient Preparation**

#### **Skin Incision**

With the patient in either the supine or lateral decubitus position, make a posterior midline longitudinal skin incision just lateral to the tip of the olecranon. Elevate a full thickness lateral flap (fasciocutaneous) on the deep fascia to protect the cutaneous nerves. The posterior midline incision permits access to the medial side of the elbow if repair of the medial collateral ligament is necessary to restore elbow stability. It is also more cosmetic than a laterally based incision. In patients with isolated injuries to the radial head, a traditional lateral skin incision may be employed.

#### **Direct Lateral Dissection**

Pronate the forearm to move the posterior interosseous nerve more distal and medial during the surgical approach. Split the common extensor tendon longitudinally at the mid-aspect of the radial head and divide the underlying radial collateral and annular ligaments. Keep the dissection anterior to the lateral ulnar collateral ligament to prevent the development of posterolateral rotatory instability. If additional exposure is needed, elevate the humeral origin of the radial collateral ligament and the overlying extensor muscles anteriorly off the lateral epicondyle and lateral supracondylar ridge. In the unusual circumstance where further exposure is required, consider releasing the posterior component of the lateral collateral ligament (including the lateral ulnar collateral ligament). However, careful ligament repair is required at the end of the procedure in order to restore the varus and posterolateral rotatory stability of the elbow. In many circumstances, the radial head is easily visualized after opening the subcutaneous tissue due to avulsion of the lateral collateral ligament and common extensor muscles from the lateral epicondyle during the injury.

#### Sizing

The EVOLVE® TRIAD Radial head plate sizes correspond with the most commonly used EVOLVE® Modular Radial Head diameters. The correctly sized plate will conform closely to the underlying bone of the reconstructed radial head. In addition to the radial head plates there are two sizes of radial neck plates. The surgeon should select the plate which best suits the fracture.

Large, free fragments of the radial head may be removed from the surgical site and used to determine the correct plate size by matching the head's radius of curvature with the sizing tray. | **FIGURE 1** 



#### FIGURE 1

EVOLVE® Sizing Dish 24981005



#### FIGURE 2

RHP *In Situ* Sizer - 20,22mm 49510138

RHP *In Situ* Sizer - 24,26mm 49510139

RNP *In Situ* Sizer - 21,25mm 49510140 Alternatively, the plate size may be determined with the in situ sizers. | FIGURE 2

#### **Reduction and Plate Positioning**

In most cases, the precontoured plate will not need to be bent. If necessary, fine adjustments in one direction only may be performed with plier benders. | **FIGURE 3** 

Provisional fixation of the fragments are performed with K-wires included in the system. The EVOLVE<sup>®</sup> TRIAD<sup>™</sup> plate may be applied directly to the radius and provisionally fixed with an Olive Wire. | **FIGURE 4** 

The plate should be carefully positioned so it does not impinge with the Proximal Radial Ulnar Joint (PRUJ) during forearm rotation. This so called "safe zone" is directly lateral with the forearm maintained in neutral rotation. The non-articular portion is more rounded and has thin or absent articular cartilage while the articulation with the ulna is flattened with thick cartilage.

If the fragments cannot be reduced *in situ* in a stable fashion, they may be removed and reassembled on the back table using the sizing tray, K-wires and EVOLVE® TRIAD™ plate. Following "screw placement" on page 12, the entire plate/ bone assembly may then be transferred to the surgical site for fixation to the radial neck.



FIGURE 3 Plate Bending Pliers 49510135



FIGURE 4 Temp Fixation Pin 1.1mm DC4212



FIGURE 5 1.3mm Drill Guide – Threaded 49510105

Drill Bit 1.3mm 49510111

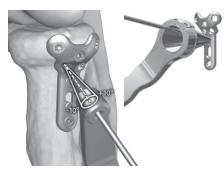



FIGURE 6 1.3 / 2.0 Bone Drill Guide 49510106

Polyaxial Drill Guide 1.3mm 49510110



FIGURE 7 Star-7 Self Retaining Driver 49510102

#### **Screw Preparation**

The screw holes of the radial plates are designed to receive 2.0mm screws. The round holes can receive either 2.0mm ORTHOLOC<sup>™</sup> Mini Polyaxial Locking Screws or 2.0mm EVOLVE<sup>®</sup> TRIAD<sup>™</sup> Non-Locking Bone Screws. The oval holes are used to allow for final adjustment of the plate position and are designed for non-locking screws only.

To use on-axis locking screws, the threaded locking drill guides should be used. | **FIGURE 5** 

Screw the threaded guide into the desired hole. Using the 1.3mm drill, drill up to the opposing cortex. Care should be taken to avoid perforating the PRUJ.

To prepare for off axis locking or non-locking screws, the variable angle drill guide is used. With locking screws, care should be taken to avoid placing the screw more than 10 degrees off axis. The Polyaxial Drill Guide may be used to constrain angling within this axis. Remove the guides and measure for the length of the screw using the depth gauge. | **FIGURE 6** 

#### **Screw Placement**

Screws are delivered to the operative site using the self-retaining Star-7 Driver. To pick up the screws, the driver is pressed firmly into the screw head while the screw is still in the caddy.

Alternatively, the screws may be picked up with the aid of the screw gripper. Screw length is verified with the gauge on the screw caddy. The plate should be securely attached to the radial head using as many 2.0mm screws as necessary.

If the plate and radial head fragments have been assembled *ex vivo*, the entire assembly is placed back in the surgical site and approximated to the shaft of the radius.

Locking screws should be tightened by hand until they lock firmly into the plate. | **FIGURE 7** 

By placing the first screw in the oval hole, the position of the plate on the radial neck and head can be adjusted for manual compression across the radial neck fracture line before final screw placement. The remainder of the screws are then placed as described above.

Fluoroscopy is used to confirm final fracture reduction and to check hardware position. The elbow is taken through a full range of motion to ensure that there is no impingement or impedance of motion.

Star-7 Straight Driver 49510101 Screw Gripper 2.0mm 49510103

Screw Gauge (Located in Screw Caddies)

Chapter 3 Surgical Technique

#### **Closure - Postoperative**

The wound is irrigated before closure. The radial collateral and annular ligaments and the common extensor origin split are carefully sutured. The competence of the Lateral Ulnar Collateral Ligament (LUCL) should be assessed and repaired if compromised by injury or the surgical approach. This can be accomplished with heavy sutures, drill holes or suture anchors. The skin is closed in layers. Postoperatively, the arm is started on early range of motion under the guidance of a trained therapist (if not precluded by other injuries of the elbow).

#### **Coronoid** Plate

#### **Patient Preparation**

The patient is supine with the arm on an arm table to facilitate a medial approach to the elbow. Fixation can also be achieved with the patient in the lateral decubitus position or with the arm over the chest when managing associated injuries.

A posterior incision is employed and a full thickness medial flap is elevated on the deep fascia with care taken to protect branches of the medial cutaneous nerve of the forearm. Alternatively a direct medial approach can be employed, but crossing cutaneous nerves need to be carefully identified and protected. The ulnar nerve can be left in place, an *in situ* release performed or an anterior transposition can be considered depending on the presence of any preoperative symptoms and the surgical approach planned. The coronoid is approached by elevating the flexor pronator mass off the medial epicondyle working through the floor of the ulnar nerve. Leave a cuff of tissue on the medial epicondyle to facilitate reattachment of the flexor-pronator mass. Use caution when approaching the sublime tubercle as the medial collateral ligament is still typically attached to this structure and should be preserved. Beginning the dissection distally and working proximally facilitates determining the correct layer. A portion of the brachialis attachment may need to be released to facilitate coronoid reduction and fixation.

#### Sizing

The coronoid plates come in three sizes and are not left/right specific.

Select a plate based on the size and configuration of the fracture. The plates utilize 2.0mm EVOLVE<sup>®</sup> TRIAD<sup>™</sup> Non-Locking Bone Screws.

#### **Reduction and Plate Positioning**

Reduce the fracture and use K-wires to provisionally hold the fragments. Contour and position the plate to capture and buttress the fracture fragment(s). This may be done prior to implantation using the plier benders.

The coronoid specific *in situ* plate bender is useful to fine tune the contouring of the plate once preliminary screw fixation has been achieved. The "limbs" of the plate may be reduced by trimming the plate as needed using the plate cutter. **FIGURE 8** 

Chapter 3 Surgical Technique





FIGURE 8

Coronoid Bender 49510134



FIGURE 9

#### **Plate and Screw Placement**

Drill using the 1.3 mm drill and the variable angle drill guide. Measure for the correct depth using the depth gauge and insert the appropriately sized screws. | **FIGURE 9** Once implantation of the plate is complete, check positioning of the plate and screws with an image intensifier.

#### **Closure - Postoperative**

Reattach the flexor pronator mass by suturing it to the cuff of tissue remaining on the medial epicondyle. The ulnar nerve can be left *in situ* or transposed anteriorly as indicated. Close in the usual manner.

The rehabilitation following plate fixation of coronoid fractures depends on the stability of the fixation and the associated injuries. In most coronoid fractures the lateral collateral ligament is torn and requires repair. Typically the elbow is evaluated for stability after fracture fixation and ligament repair and early active motion is commenced within a safe zone after immobilization for a few days post-operatively.

#### **EVOLVE® TRIAD™ 2.5mm Cannulated Bone Screws**

#### **K-Wire Placement**

The 0.9mm K-wire is advanced across the fracture, fusion or osteotomy site to the desired depth using the K-wire guide. Verify the desired positioning of the wire fluoroscopically.

#### Drilling

Slide the appropriate cannulated drill bit over the K-wire. Under power, drill to the desired screw depth. | **FIGURE 10** 

#### Countersinking

The countersink should be used to ensure complete seating of the screw. Load the appropriate countersink onto the Cannulated AO Driver Handle and turn the countersink in a clockwise motion to penetrate the cortex of the bone. | **FIGURE 11** 



FIGURE 11 Countersink for 2.5mm Screws 49510114

FIGURE 10

K-Wire 0.9 X150mm DSDS1009

K-Wire Guide -0.9mm 49510115

Drill Bit 2.0mm 49510143

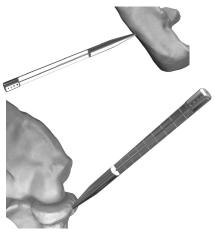
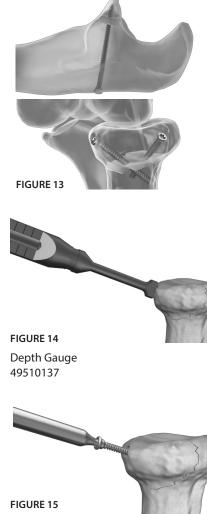




FIGURE 12 Depth Gauge-Cannulated 49510104



Star 6 Straight Driver 49510100

#### **Screw Length Determination**

After countersinking, measure screw length by using the Cannulated Depth Gauge. Slide the tip of the Cannulated Depth Gauge over the K-wire and down to the surface of the bone, ensuring that the gauge is seated flush to the bone. | **FIGURE 12** The gauge measurement indicates the depth from the surface of the bone (after countersinking) to the tip of the K- wire.

#### **Screw Placement**

Load the Star-8 Driver into the Cannulated AO Driver Handle. Place the screw over the K-wire and use the driver to advance the screw into the bone, until the head is completely countersunk within the bone. | **FIGURE 13** Depending on the stability of the first screw, procedure type, and patient related factors, multiple screws may be used for additional fixation.

Remove the K-wire and perform surgical closure.

#### EVOLVE® TRIAD<sup>™</sup> 1.5mm and 2.0mm Bone Screws (outside plate)

In addition to the cannulated screws, 1.5mm or 2.0mm bone screws may be used to capture fragments without the use of a plate.

#### Drilling

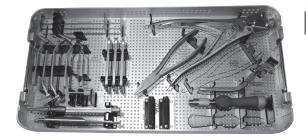
Using the proper diameter drill guide and drill bit, drill to the desired depth under power.

#### **Screw Length Determination**

Measure screw length by using the Depth Gauge. The gauge measurement indicates the depth from the surface of the bone to the tip of the gauge; adjust accordingly for countersinking or lagging. | **FIGURE 14** 

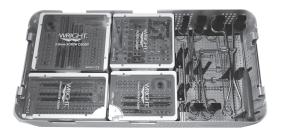
#### Countersinking

To ensure complete seating of the screw, the countersink may be used. Load the appropriate color coded countersink onto the Driver Handle, and turn the countersink in a clockwise motion to penetrate the cortex of the bone.


#### **Screw Placement**

Use the driver to advance the screw into the bone, until the head is completely countersunk within the bone. Depending on the stability of the first screw, procedure type, and patient related factors, multiple screws may be used for additional fixation. | **FIGURE 15** 

#### **Explant Information**


At times, the surgeon believes it is medically necessary to remove implanted plates and screws. To remove screws, note the diameter of the screw to be removed. Locate the appropriate driver in the table on page 7. Remove screws by inserting the matching driver into the screw head and turning counter clockwise.

## Ordering Information 4951KIT1/A



#### **EVOLVE® TRIAD™ INSTRUMENT TRAY**

| Catalog No. | Description                                            |
|-------------|--------------------------------------------------------|
| 49510128    | EVOLVE® TRIAD™ INNER TRAY 2 - INSTRUMENTS              |
| 49510135    | EVOLVE® TRIAD™ PLATE BENDING PLIERS                    |
| 49510120    | EVOLVE® TRIAD™ PLATE CUTTER                            |
| 49510138    | EVOLVE® TRIAD™ <i>IN SITU</i> SIZER - 20,22MM RHP      |
| 49510139    | EVOLVE® TRIAD™ IN SITU SIZER - 22,24MM RHP             |
| 49510140    | EVOLVE® TRIAD <sup>™</sup> IN SITU SIZER - 21,25MM RNP |
| 49510105    | EVOLVE® TRIAD™ 1.3MM DRL GUIDE -THREADED               |
| 49510106    | EVOLVE® TRIAD™ 1.3 / 2.0 - BONE DRILL GUIDE            |
| 49510104    | EVOLVE® TRIAD™ DEPTH GAUGE                             |
| 49510107    | EVOLVE® TRIAD™ AOQC CANNULATED HANDLE                  |
| 49510110    | EVOLVE® TRIAD™ POLYAXIAL DRILL GUIDE 1.3MM             |
| 49510056    | SCREW FORCEPS EVOLVE® EPS                              |
| 49510137    | EVOLVE® TRIAD™ DEPTH GAUGE CANNULATED                  |
| 49510115    | EVOLVE® TRIAD™ K-WIRE GUIDE -0.9MM                     |
| 49510134    | EVOLVE <sup>®</sup> TRIAD <sup>™</sup> CORONOID BENDER |
| 49510109    | EVOLVE® TRIAD™ 1.1MM DRILL GUIDE                       |
| DSDS1009    | K-WIRE 0.9 X150MM BLUNT/TROCAR                         |
| DSDS1011    | K-WIRE 1.1 X150MM BLUNT/TROCAR                         |
| 44112008    | SINGLE TROCAR WIRE 1.6X150MM                           |



#### GENERAL INSTRUMENTS AND IMPLANT CADDY TRAY

| Catalog No. | Description                                                           |  |  |
|-------------|-----------------------------------------------------------------------|--|--|
| 49510127    | EVOLVE <sup>®</sup> TRIAD <sup>™</sup> INNER TRAY 1 - IMPLANT CADDIES |  |  |
| 49510058    | TENACULUM SMALL POINTED                                               |  |  |
| 49510057    | TENACULUM SMALL SERRATED                                              |  |  |
| 49510059    | TENACULUM MEDIUM POINTED                                              |  |  |
| 520200008   | BONE FRAGMENT PICK                                                    |  |  |
| 5362000004  | ELEVATOR                                                              |  |  |
|             | PLATE AND SCREW CADDIES (see next page)                               |  |  |



#### PLATE CADDY

| Catalog No. | Description                                                   |
|-------------|---------------------------------------------------------------|
| 49510136    | EVOLVE® TRIAD™ PLATE CADDY                                    |
| 4920H020    | EVOLVE® TRIAD™ 20MM RADIAL HEAD PLATE                         |
| 4920H022    | EVOLVE® TRIAD™ 22MM RADIAL HEAD PLATE                         |
| 4920H024    | EVOLVE <sup>®</sup> TRIAD <sup>™</sup> 24MM RADIAL HEAD PLATE |
| 4920H026    | EVOLVE® TRIAD™26MM RADIAL HEAD PLATE                          |
| 4920N021    | EVOLVE® TRIAD™21MM RADIAL NECK PLATE                          |
| 4920N025    | EVOLVE <sup>®</sup> TRIAD <sup>™</sup> 25MM RADIAL NECK PLATE |
| 4920C004    | EVOLVE® TRIAD™ CORONOID BUTTRESS PLATE SM                     |
| 4920C007    | EVOLVE® TRIAD™ CORONOID BUTTRESS PLATE MED                    |
| 4920C011    | EVOLVE® TRIAD™ CORONOID BUTTRESS PLATE LG                     |
| DC4212      | TEMP FIXATION PIN 1.1mm                                       |



#### 1.5MM SCREW CADDY

| Catalog No. | Description                                              |
|-------------|----------------------------------------------------------|
| 49510130    | EVOLVE <sup>®</sup> TRIAD <sup>™</sup> 1.5MM SCREW CADDY |
| 4941510N    | EVOLVE®TRIAD <sup>™</sup> SCREW 1.5X10MM                 |
| 4941512N    | EVOLVE®TRIAD <sup>™</sup> SCREW 1.5X12MM                 |
| 4941514N    | EVOLVE®TRIAD <sup>™</sup> SCREW 1.5X14MM                 |
| 4941516N    | EVOLVE®TRIAD <sup>™</sup> SCREW 1.5X16MM                 |
| 4941518N    | EVOLVE®TRIAD™ SCREW 1.5X18MM                             |
| 4941520N    | EVOLVE®TRIAD <sup>™</sup> SCREW 1.5X20MM                 |
| 4941522N    | EVOLVE®TRIAD™ SCREW 1.5X22MM                             |
| 4941524N    | EVOLVE®TRIAD <sup>™</sup> SCREW 1.5X24MM                 |
| 4941526N    | EVOLVE®TRIAD <sup>™</sup> SCREW 1.5X26MM                 |
| 4941528N    | EVOLVE®TRIAD™ SCREW 1.5X28MM                             |
| 49510121    | EVOLVE® TRIAD <sup>™</sup> COUNTERSINK FOR 1.5MM SCREWS  |
| 49510122    | EVOLVE® TRIAD™ GRIPPER 1.5MM SCREW                       |
| 49510100    | EVOLVE® TRIAD™ STAR 6 STRAIGHT DRIVER                    |
| 49510108    | EVOLVE® TRIAD™ DRILL BIT 1.1MM                           |

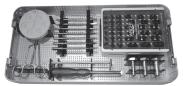


#### 2.0MM SCREW CADDY

I

| Catalog No. | Description                                                         |
|-------------|---------------------------------------------------------------------|
| 49510131    | EVOLVE® TRIAD™ 2.0MM SCREW CADDY                                    |
| 4942010L    | ORTHOLOC™ MINI SCREW 2.0X10MM                                       |
| 4942012L    | ORTHOLOC™ MINI SCREW 2.0X12MM                                       |
| 4942014L    | ORTHOLOC™ MINI SCREW 2.0X14MM                                       |
| 4942016L    | ORTHOLOC™ MINI SCREW 2.0X16MM                                       |
| 4942018L    | ORTHOLOC™ MINI SCREW 2.0X18MM                                       |
| 4942020L    | ORTHOLOC™ MINI SCREW 2.0X20MM                                       |
| 4942022L    | ORTHOLOC™ MINI SCREW 2.0X22MM                                       |
| 4942024L    | ORTHOLOC™ MINI SCREW 2.0X24MM                                       |
| 4942026L    | ORTHOLOC™ MINI SCREW 2.0X26MM                                       |
| 4942028L    | ORTHOLOC™ MINI SCREW 2.0X28MM                                       |
| 4942030L    | ORTHOLOC™ MINI SCREW 2.0X30MM                                       |
| 4942010N    | EVOLVE <sup>®</sup> TRIAD <sup>™</sup> SCREW 2.0X10MM               |
| 4942012N    | EVOLVE <sup>®</sup> TRIAD <sup>™</sup> SCREW 2.0X12MM               |
| 4942014N    | EVOLVE <sup>®</sup> TRIAD <sup>™</sup> SCREW 2.0X14MM               |
| 4942016N    | EVOLVE <sup>®</sup> TRIAD <sup>™</sup> SCREW 2.0X16MM               |
| 4942018N    | EVOLVE <sup>®</sup> TRIAD <sup>™</sup> SCREW 2.0X18MM               |
| 4942020N    | EVOLVE <sup>®</sup> TRIAD <sup>™</sup> SCREW 2.0X20MM               |
| 4942022N    | EVOLVE <sup>®</sup> TRIAD <sup>™</sup> SCREW 2.0X22MM               |
| 4942024N    | EVOLVE <sup>®</sup> TRIAD <sup>™</sup> SCREW 2.0X24MM               |
| 4942026N    | EVOLVE <sup>®</sup> TRIAD <sup>™</sup> SCREW 2.0X26MM               |
| 4942028N    | EVOLVE <sup>®</sup> TRIAD <sup>™</sup> SCREW 2.0X28MM               |
| 4942030N    | EVOLVE <sup>®</sup> TRIAD <sup>™</sup> SCREW 2.0X30MM               |
| 4942035N    | EVOLVE <sup>®</sup> TRIAD <sup>™</sup> SCREW 2.0X35MM               |
| 4942040N    | EVOLVE® TRIAD™ SCREW 2.0X40MM                                       |
| 49510103    | EVOLVE <sup>®</sup> TRIAD™ GRIPPER 2.0MM                            |
| 49510145    | EVOLVE <sup>®</sup> TRIAD™ COUNTERSINK                              |
| 49510101    | EVOLVE® TRIAD™ STAR 7 STRAIGHT DRIVER                               |
| 49510102    | EVOLVE <sup>®</sup> TRIAD <sup>™</sup> STAR 7 SELF RETAINING DRIVER |
| 49510111    | EVOLVE <sup>®</sup> TRIAD™ DRILL BIT 1.3MM                          |
| 49510112    | 2.0MM DRILL BIT                                                     |
|             |                                                                     |

Appendix Ordering Information


#### 2.5MM SCREW CADDY

| Catalog No. | Description                                                                       |
|-------------|-----------------------------------------------------------------------------------|
| 49510132    | EVOLVE <sup>®</sup> TRIAD <sup>™</sup> 2.5MM SCREW CADDY                          |
| 4942510CH   | EVOLVE <sup>®</sup> TRIAD <sup>™</sup> CANNULATED SCREW 2.5X10MM (FULLY THREADED) |
| 4942512CH   | EVOLVE <sup>®</sup> TRIAD <sup>™</sup> CANNULATED SCREW 2.5X12MM (FULLY THREADED) |
| 4942514CH   | EVOLVE® TRIAD™ CANNULATED SCREW 2.5X14MM (FULLY THREADED)                         |
| 4942516CH   | EVOLVE® TRIAD™ CANNULATED SCREW 2.5X16MM (FULLY THREADED)                         |
| 4942518CH   | EVOLVE® TRIAD™ CANNULATED SCREW 2.5X18MM (FULLY THREADED)                         |
| 4942520CH   | EVOLVE® TRIAD™ CANNULATED SCREW 2.5X20MM (FULLY THREADED)                         |
| 4942522CH   | EVOLVE® TRIAD™ CANNULATED SCREW 2.5X22MM (FULLY THREADED)                         |
| 4942524CH   | EVOLVE® TRIAD™ CANNULATED SCREW 2.5X24MM (FULLY THREADED)                         |
| 4942526CH   | EVOLVE® TRIAD™ CANNULATED SCREW 2.5X26MM (FULLY THREADED)                         |
| 4942528CH   | EVOLVE® TRIAD™ CANNULATED SCREW 2.5X28MM (FULLY THREADED)                         |
| 4942530CH   | EVOLVE® TRIAD™ CANNULATED SCREW 2.5X30MM (FULLY THREADED)                         |
| 4942532CH   | EVOLVE® TRIAD™ CANNULATED SCREW 2.5X32MM (FULLY THREADED)                         |
| 4942534CH   | EVOLVE® TRIAD™ CANNULATED SCREW 2.5X34MM (FULLY THREADED)                         |
| 4942536CH   | EVOLVE® TRIAD™ CANNULATED SCREW 2.5X36MM (FULLY THREADED)                         |
| 4942538CH   | EVOLVE® TRIAD™ CANNULATED SCREW 2.5X38MM (FULLY THREADED)                         |
| 4942540CH   | EVOLVE® TRIAD™ CANNULATED SCREW 2.5X40MM (FULLY THREADED)                         |
| 4942542CH   | EVOLVE® TRIAD™ CANNULATED SCREW 2.5X42MM (FULLY THREADED)                         |
| 4942544CH   | EVOLVE® TRIAD™ CANNULATED SCREW 2.5X44MM (FULLY THREADED)                         |
| 4942546CH   | EVOLVE® TRIAD™ CANNULATED SCREW 2.5X46MM (FULLY THREADED)                         |
| 4942548CH   | EVOLVE® TRIAD™ CANNULATED SCREW2.5X48MM (FULLY THREADED)                          |
| 4942550CH   | EVOLVE® TRIAD™ CANNULATED SCREW2.5X50MM (FULLY THREADED)                          |
| 49510114    | EVOLVE® TRIAD™ COUNTERSINK FOR 2.5MM SCREWS                                       |
| DSDS0001    | CLEANING STYLET 0.9MM                                                             |
| 49510144    | EVOLVE® TRIAD™ STAR 8 CANNULATED DRIVER                                           |
| 49510143    | EVOLVE® TRIAD™ DRILL BIT 2.0MM                                                    |



In addition to the Instruments for the EVOLVE® TRIAD™ System, we have included instrumentation from the EVOLVE® Proline Radial Head Replacement System.

#### INSTRUMENTS FROM EVOLVE® PROLINE RADIAL HEAD REPLACEMENT SYSTEM



| Catalog No. | Description                        | Catalog No. | Description                        |
|-------------|------------------------------------|-------------|------------------------------------|
| 49510126    | EVOLVE® TRIAD™ RADIAL HD TRAY      | 2499H226    | EVOLVE® PROLINE TRIAL HEAD 26MM +2 |
| 24981001    | EVOLVE® PROLINE TRIAL HEAD HANDLE  | 2499H228    | EVOLVE® PROLINE TRIAL HEAD 28MM +2 |
| 24981002    | EVOLVE® PROLINE TRIAL STEM HANDLE  | 2499H418    | EVOLVE® PROLINE TRIAL HEAD 18MM +4 |
| 24981003    | EVOLVE® PROLINE NECK PLANER        | 2499H420    | EVOLVE® PROLINE TRIAL HEAD 20MM +4 |
| 24981005    | EVOLVE® PROLINE SIZING /ASSEM DISH | 2499H422    | EVOLVE® PROLINE TRIAL HEAD 22MM +4 |
| 24981007    | EVOLVE® PROLINE IMPACTOR 4.5/5.5MM | 2499H424    | EVOLVE® PROLINE TRIAL HEAD 24MM +4 |
| 24981008    | EVOLVE® PROLINE IMPACTOR 6.5/7.5MM | 2499H426    | EVOLVE® PROLINE TRIAL HEAD 26MM +4 |
| 24981009    | EVOLVE® PROLINE IMPACTOR 8.5/9.5MM | 2499H428    | EVOLVE® PROLINE TRIAL HEAD 28MM +4 |
| 24987100    | EVOLVE® PROLINE STEM STARTER AWL   | 24995045    | EVOLVE® PROLINE TRIAL STEM 4.5MM   |
| 24987145    | EVOLVE® PROLINE STEM BROACH 4.5MM  | 24995055    | EVOLVE® PROLINE TRIAL STEM 5.5MM   |
| 24987155    | EVOLVE® PROLINE STEM BROACH 5.5MM  | 24995065    | EVOLVE® PROLINE TRIAL STEM 6.5MM   |
| 24987165    | EVOLVE® PROLINE STEM BROACH 6.5MM  | 2499\$075   | EVOLVE® PROLINE TRIAL STEM 7.5MM   |
| 24987175    | EVOLVE® PROLINE STEM BROACH 7.5MM  | 24995085    | EVOLVE® PROLINE TRIAL STEM 8.5MM   |
| 24987185    | EVOLVE® PROLINE STEM BROACH 8.5MM  | 24995095    | EVOLVE® PROLINE TRIAL STEM 9.5MM   |
| 24987195    | EVOLVE® PROLINE STEM BROACH 9.5MM  | 2499\$245   | EVOLVE® PROLINE TRIAL STEM 4.5MM+2 |
| 24987105    | EVOLVE® PROLINE STEM BROACH 10.5MM | 2499S255    | EVOLVE® PROLINE TRIAL STEM 5.5MM+2 |
| 2499H018    | EVOLVE® PROLINE TRIAL HEAD 18MM    | 24995265    | EVOLVE® PROLINE TRIAL STEM 6.5MM+2 |
| 2499H020    | EVOLVE® PROLINE TRIAL HEAD 20MM    | 2499\$275   | EVOLVE® PROLINE TRIAL STEM 7.5MM+2 |
| 2499H022    | EVOLVE® PROLINE TRIAL HEAD 22MM    | 24995285    | EVOLVE® PROLINE TRIAL STEM 8.5MM+2 |
| 2499H024    | EVOLVE® PROLINE TRIAL HEAD 24MM    | 2499\$295   | EVOLVE® PROLINE TRIAL STEM 9.5MM+2 |
| 2499H026    | EVOLVE® PROLINE TRIAL HEAD 26MM    | 24995445    | EVOLVE® PROLINE TRIAL STEM 4.5MM+4 |
| 2499H028    | EVOLVE® PROLINE TRIAL HEAD 28MM    | 24995455    | EVOLVE® PROLINE TRIAL STEM 5.5MM+4 |
| 2499H218    | EVOLVE® PROLINE TRIAL HEAD 18MM +2 | 24995465    | EVOLVE® PROLINE TRIAL STEM 6.5MM+4 |
| 2499H220    | EVOLVE® PROLINE TRIAL HEAD 20MM +2 | 24995475    | EVOLVE® PROLINE TRIAL STEM 7.5MM+4 |
| 2499H222    | EVOLVE® PROLINE TRIAL HEAD 22MM +2 | 24995485    | EVOLVE® PROLINE TRIAL STEM 8.5MM+4 |
| 2499H224    | EVOLVE® PROLINE TRIAL HEAD 24MM +2 | 24995495    | EVOLVE® PROLINE TRIAL STEM 9.5MM+4 |
|             |                                    |             |                                    |

Sterile implants for the radial head are available in 2499KITA. Consult EVOLVE® Radial Head Arthroplasty surgical technique (SO317-1106).



Wright Medical Technology, Inc. Wright Medical EMEA 1023 Cherry Road Memphis, TN 38117 800 238 7117 901 867 9971 www.wmt.com

Atlas Arena, Australia Building

Hoogoorddreef 5 1101 BA Amsterdam The Netherlands 011 31 20 545 0100

™Trademarks and \*Registered marks of Wright Medical Technology, Inc. ©2013 Wright Medical Technology, Inc. All Rights Reserved.